蒸发镀膜的精细监测

薛大同 魏向荣

1. 概述

为满足膜厚测定高稳定度的要求,我们研制成功SF-3型监测器。由于采取10兆 赫特定切角、成对晶体组装、改进装架结构和工艺、取消不稳定的LC振荡器调零、 /v转换、改用大讯号混频、数字频率计直接读及等措施,本监测器在恒温31.7±0.2℃ 下72小时频漂标差4赫,40~-80℃双向温漂250赫,通频带15赫~200千赫。将该监测 器安装在DM-450镀膜机中,实现了蒸发镀膜的精细监测。

北京仪器厂生产的DM-450型镀膜机,蒸发舟偏置,工件盘在蒸发源上方295毫米, 盘径350毫米。使用的工件盘在直径124、203、284毫米圆周分别加工有10、16、22个圆 孔,孔径Ø31.5,以盛放工件。工件盘可绕轴线旋转,转速约25转/分。镀膜底盘上有 现成的四芯密封引线和法兰口可供使用。在转盘中央安装带有水冷基板的晶体座,并就 近安置线路盒。水管从法兰口引出,电源线及混频讯号通过密封引线引出。用9伏直流 供电,数字频率计读数。

频率与沉积量的关系用下式计量:

$$q = 4_{\bullet} 43 \times 10^{5} \frac{f_{2} - f_{1}}{(F_{0} - f_{1}) (F_{0} - f_{2})}$$
(1)

式中q为沉积的质量厚度(克/厘米²),F₀为参考晶振频率(赫),f₁为每次蒸镀前的 **混**频频率,f₂为蒸镀后的混频频率。

为了校核测量的可靠性,一致性,并检测镀膜的均匀性,我们还采用5~6片单片 晶体,分别固定在厚0.1毫米的铝箔掩模上,掩模孔径大于晶体电极。这些晶体一掩 模 片根据需要可放在转盘不同位置并用曝大气异位测频确定膜厚。曝大气异位测频,稳定 度比真空原位测频要差得多,但仍然相当灵敏。与此同时,采用4片0.1毫米厚铝 箔 作 为比较片。铝箔镀膜前后的质量,用感量为10微克的WT-2A型微量天平称出。为了 计算沉积面积,铝箔分别置于具有锥孔的铜框架上,锥孔直径用移测显微镜在四个角度 读出,并由平均直径算出锥孔面积。1~4号框架锥孔的面积依次为: 2.696、2.684, 1.695、2.676厘米²。

另外,也可以根据余弦定律,由蒸发用料计算不同位置的沉积率。当转盘不转,工 件在转盘上且其轴线与蒸发舟及转盘轴线共平面时,对于小面蒸发源可以求得:

$$q = \frac{MH^2}{\pi (H^2 + A^2)^2}$$
 (2)

式中M为蒸发用料(克),H为蒸发舟至转盘的垂高(厘米),A为工件与蒸发舟间的

• 1 •

水平距离(厘米)。

当转盘转动时,工件的平均沉积量为:

$$q = \frac{MH^2}{180\pi} \int_0^{180} \frac{d\phi}{(H^2 + D^2 + B^2 - 2DB \cos\phi)^2}$$
(3)

式中D为蒸发舟距转盘轴线的水平距离(厘米),B为工件距转盘轴线的水平距离(厘 米), φ为转盘转动角度。(3)式可以用数值积分籍助袖珍计算机求解。

2. 灵敏度校验

一般认为,石英晶体微量天平是绝对称量工具,国内外的校验结果,除了明显的方法失当外,都证明了这一点。SF-3 监测器曾用溅射镀钽膜,干涉显微镜测比 较 片 膜厚作过校验,也与理论值相符。为了稳妥可靠,我们利用DM-450镀膜机工件 可 旋 转的优点,在同一圆周放置多片晶体及比较片,再次作了校验。蒸镀材料选用金,取其化学稳定,蒸发温度也不太高。结果如表1所示。

实验	蒸镀品	时间 晶体片测得沉积量(微克/厘米 ²)								
序号	时间	圈数	23*	24*	25*	27*	28*	29*	平均	标差
18	19'33"7	501	132.0	130.6	131.4	1	130.4	132.1	131.3	0.78
20	16'41"1	428	132.6	132.5	133.7	132.0	133.6	133.4	133.0	0.69

表 1 灵敏度校验

铝箔测得沉积量(微克/厘米 ²)									
1* 2* 3* 4* 平均 标差									
128.7	130.0	128.0	134.5	130.3	2.92				
130.9	128.2	120.9	134.9	128.7	5,90				

表1表明,晶体片测得沉积量与铝箔测得的沉积量之差,在后者本身的零散及天平感 量范围内,且晶体片互相间零散更小。考虑到晶体片是曝大气异位检测的,吸放气情况 及夹引线造成的应力频变都有变化,可以肯定真空原位监测的效果还要好些。

除表1所列之外,我们在均匀性检测时,还作了同一几何位置两三片晶体片间及一 二片铝箔间的对比,结果与表1类似。

3. 用料与沉积量之比

• 2 •

序 验 号 平均 实 2. 3 12 13 18 20 26 标差 金料 (臺克) 59.7 58.1 250.1 363.3 530 542 22 沉积量(微克/厘米²) 15.1212.9865.3385.72146.9152.7 5.28 比 值 (厘米²) 3948 4476 3828 4238 3608 3549 4167 3973 340

表 2 用料与沉积量之比

表 2 仍选用蒸金的数据,仅惕除金料没有称重及确实金料没蒸完的实验未予列入。 表 2 表明,理论比值与实际比值的偏离,在实测零散范围内。考虑到金料在蒸发舟内蒸 发的位置不尽相同,舟沿对蒸发的阻挡及金料在舟外的流散,实测数据零散较大是可以 理解的。表 1 对表 1,灵敏度检验,也是一种旁证。同时,它也可以作为蒸镀备料多少 的依据。

4. 沉积率分布

转盘不转,大片晶体片排列在转盘上正对蒸发舟的直径上,可以测得沉积率的几何 位置分布。实验表明,该分布与按(2)式计算的结果基本一致,如图1所示。

图 1 的实验仍用金料, 蒸发8'33"8, 中央监测晶体沉积量为116.0微克/厘米2。

图 1 表明, 蒸发确实是按余弦定律分布的。实测与理论的偏离, 可分析为实际蒸发 位置偏离舟中心、舟沿阻挡、吸放气效应影响、测量误差等原因。

5.均匀性检测

转盘旋转、晶体片排布在转盘不同半径上,可以测得转盘各处沉积量的均匀性。以 转盘中央监测晶本测得的沉积量为100%,得到的沉积量分布如图 2 所示。图 2 中 各次 实验的蒸发条件如表 3 所示。

实验序号	中央晶体沉积量(微克/厘米 ²)	蒸发时间	相当转动圈数
12	65.33	20' 56" 2	537
13	85.72	20'55"2	536
14	152.7	21′41″3	556
19	155.5	12″1″3	308

表 3 均匀性检测的蒸发条件

* 8 *

以蒸镀高熔点金属时必须设法降低热出气。例如,蒸 发舟先做空载闪烁,钟罩预先加热去气并在蒸发过程 中予以冷却,或者在舟与钟罩间加上冷屏。

7、沉积膜的吸放气效应

停止蒸发后继续监视频率变化,我们发现,蒸发 快慢对停蒸后的频率变化有影响。无论是蒸金、铝还 是氧化铥,对于同种材料,其一致规律是,蒸得快则 停蒸后频率继续上升,蒸得慢则停蒸后 频 率 有 所下 降。我们认为,其原因主要是蒸得慢时,沉积膜随时 和环境取得吸放气平衡,停止蒸发后,环境真空度得

由公式(3),我们可以从理 论上计算沉积量在转盘不同半径上 的分布,该理论曲线一并示于图 2。可以看到,理论与实际的偏离 在实际检测零散范围内。

将图1、图2进行比较,可以 看到转盘旋转对提高均匀性大有好 处。但是,如果按(3)式仔细设 计,可望找到更佳的几何位置。

6. 钟罩内热出气的影响

为了检验出热出气的影响,我 们连续做了两次空载实验,实验条 件及频率变化情况如图 3 / 示。

空载实验中,随着舟被通电加 热,钟罩靠近舟处温度也上升。同 时,晶体混频频率也增加。电流越 大,频率上升得越快。停止加热 后,频率仅略有下降,一放大气, 频率又上升,可见频率变化的原 因,主要不是晶体的温度频率效 应,而是吸附了热出气的结果。所

• 4 •

到改善,沉积物也随之略有放气,而蒸得快时,沉积膜较为新鲜,停止蒸发后,还要继 续吸气。我们把金、氧化铥,停蒸后频变曲线示于图 4 a~d,横座 标 为开始蒸发计时 的时间,纵座标设在停止蒸发瞬间,其刻度代表混频频率。

为了印证上述看法,我们在部分实验中接着记录了曝大气及重新抽真空后的频率变 化,一并示于图中。可以看到, 膜层的吸放气效应是很明显的。

有鉴于此,为了得到密实的膜层,真空度不宜太差,蒸发速率也不能过低。

8. 蒸发过程监测

图 4 d

蒸发过程中,我们用秒表记录蒸发时间。频率计置1秒档,相邻两次记数间隔时间 为1.2秒。实验证实,由于仪器足够稳定,即使相邻两次记数相差仅1赫,也能予以反 映。也就是说,仪器可以反映小到4毫微克/厘米2秒的沉积率。

但是作为沉积量检测,必须看到频率确实在稳定上升,才能置信。例如,以上述最 小沉积率连续观察8次记数,则最小沉积量定为0.04 微克/厘米2。这么小的沉积量, 用称重法是难以检测的。

应该指出,由于前述热出气及吸放气效应的影响,在蒸镀难熔和吸气材料时,检测 到的沉积量不全是被镀材料。

SF-3监测器最大称量指标为频变200千赫,我们实际蒸镀32次,累计频变297千 赫,相当1.36毫克/厘米²,仍未停振。

蒸发过程中频率的变化仅以第20次实验为例,示于图 5。

从图 5 可以看到, 蒸发过程具有 S型曲线, 这是因为开始阶段料没完全熔化, 温度 也没达到平衡, 最后阶段料快蒸尽, 蒸发率又下降。

如果配上打印机,快速记录频率变化,就可以绘制小蒸发量的沉积过程。

9. 晶体座基板不通水的影响

为了尽量简化使用条件,作了晶体座基板不通冷却水的实验。用四片铝箔放在转盘 直径203毫米圆周上作称重比较,蒸金后测得沉积量为:1*,174.3微克/厘米²;2*, 126.7微克/厘米²;3*,135.7微克/厘米²;4*,136.4微克/厘米²。其中1*按Grubb^S 准则以显著度0.05为标准检验,应予舍弃(估计可能是称重中读错游标造成的)。舍弃 1*后,平均值为132.9微克/厘米²。按显著度为0.05估计(自由度为2,t分布的双侧 分位数4.303)。毋体的置信区间为119.9~146.4微克/厘米²。而转盘中央监测晶体 测 得为157.4微克/厘米²,按余弦定律作位置修正,在铝箔位置为140.9微克/厘米²,在置 信区间内。所以不能认为不通水有明显影响。看来,SF-3监测器晶体与基座 热 接 触 相当良好。在条件不具备,精度要求和蒸发温度又不很高的时候,晶体座基板可以不通 水冷却。

10. 结论

SF-3型石英晶体微量天平小巧、灵敏、称量常数无需一一校验,在蒸发 镀 膜 测 量中,可反映的最小沉积率为4毫微克/厘米²秒,最小沉积量为0.04微克/厘米²,最 大称量大于1毫克/厘米²,是精细监测蒸发镀膜的理想工具。实验表明,在镀膜 过 程 中存在热出气及膜层吸放气效应,它对于膜厚的测量有一定程度的影响。物料在舟中蒸

发,符合余弦定律分布,可以据此估算蒸发用料 和膜层的均匀性。工件盘旋转,对提高膜层均匀 性大有好处,仔细设计,可望找到蒸发源和工件 盘的最佳配置。晶体座不通水冷却,也可使用。

附录 国内外灵敏度校验结果

1. 上海曙机械厂: 7兆赫晶体

灵敏度平均值为8.957×-°克/厘米²•赫, 按显著度为0.05估计(自由度为10,t分布的双侧 分位数2.228),母体的置信区间为8.325~9.58 9×10⁻°克/厘米²•赫。而7兆赫晶体的理论灵 敏度为9.032×10⁻°克/厘米²•赫,在置信区间 内。

• 8 •

	序号材料	频差	膜厚	固体密度	质量厚度	灵敏度
所 专		(千赫)	(埃)	(克/厘米 ³)	(克/厘米3)	(克/厘米2•赫)
1	铝	3.1	931	2,699	$2_{5}513 \times 10^{-5}$	8.106×10-°
2	铝	5.8	1851	2.699	4.996×10^{-5}	8.614×10-9
3	铝	9.0	2872	2,699	7.752×10^{-5}	8.613×10-9
4	铝	12	3872	2.699	1.045×10^{-4}	8.709×10-9
5	铝	13.8	5131	2.699	1.385×10^{-4}	1.004×10-*
6	二氧化硅	2.4	837	2.65	2.218×10^{-5}	9.242×10-9
7	金	40	1512	19.32	2.921×10^{-4}	7.303×10-°
8	金	26	1350	19.32	2.608×10^{-4}	1.003×10^{-8}
9	金	14.4	730	19.32	1.410×10^{-4}	9.794×10-*
10	银	9.3	713	10.49	7.479×10^{-5}	8.042×10^{-9}
11	银	28.2	2699	10.49	2.828×10-4	1.003×10-8

校验方法:干涉显微镜测膜厚。

数据来源:上海曙光机械制造厂:《真空技术》,2(1976)114。

注: 原数据以理论膜厚形式给出,而不是给出灵敏度。

2. 南开大学物理系: 5兆赫晶体

2

今 旦	序日 4 M	频差	玻片沉积质量	质量厚度	灵敏度	
厅厅	12 14	(千 赫)	(克)	(克/厘米2)	(克/厘米 ² •赫)	
		29.4	2.70×10^{-3}	7 548 × 10-4	1.966×10-8	
1		30,4	2.78×10 ⁻³	7.546×10		
0		200	1.75×10^{-3}	4 79E × 10-4	1.640×10 ⁻⁸	
2	述	40.0	1.68×10^{-3}	4.725×10		
3	£0	16.6	1.07×10^{-3}	0.075 × 10-4	1.792×10 ⁻⁸	
	ង	10.0	1.09×10^{-3}	2.9/3×10		

灵敏度平均值为1.799×10⁻⁸克/厘米²·赫,按显著度为0.05估计(自由度为2,^t-分布的双侧分位数为4.303),毋体的置信区间为1.394~2.205×10⁻⁸克/厘米²·赫。

- 7 -

而5兆赫晶体的理论灵敏度为1.772×10^{-*}克/厘米²·赫,在置信区间内。

校验方法,两玻片,一晶体三者对蒸发源对称安置,靶舟距12.6厘米、玻片面积为 3.63厘米²,用感量为0.01毫克的天平称重。

数据来源:李麓维、薛召南、穆宝芬(南开大学):蒸涂脱层厚度和蒸速的动态监控,第一届全国蒋腹会议资料,1982年6月。

注:他们对铝、银两种材料还做过大量面积蒸镀称重,由于靶径比靶源距大,靶上 显然镀层中间厚,边上薄,因此计算出来的灵敏度偏低。

8.英国爱德华高真空有限公司, 6兆赫晶体。

图6 爱德华公司校准曲线

晶体电极直径:1/4 英寸(0.635厘 米)

掩膜孔直径: 蒸 铝用1/4 英 寸, 溸银用3/16英寸。

蒸银时,由于电极直径大于掩膜孔 直径,所以应以电极直径计算平均质量 厚度。

于是,可从图 1 求得灵敏度, 对蒸 银为1.149×10⁻⁸克/厘米²•赫,蒸铝为 1.171×10⁻⁸克/厘米²•赫。平均 值为 1.160×10⁻⁸克/厘米²•赫,按显 著度 为0.05估计(自由度为1, t分布 的双 侧分位数为12.706),母体的置信区间 为1.020~1.300×10⁻⁸克/厘米²•赫, 而6兆赫晶体的理论灵敏度为1.231×10 ⁻⁸克/厘米²•赫,在置信区间内。

数据来源: W、Steckelmacher et al:Electronic,Companents,5, 5(1964) 405。

材	vient	频	差	膜	厚	密	度	质量]厚度	灵	敏	度
	ዮት	(売	赤)	(‡	矣)	(克/》	₹米³)	(克/	厘米²)	(克/)	亶米 ²	・赫)
		3	30	1	47	1.	066	1.57	×10 ⁻⁶	4.7	75 × 1	0-9
DC 705油		5	81	2	26	1.	066	2.41	× 10 ⁻⁶	4.	15×1	e – 0
,		17	36	7	39	1.	066	7.88	×10 ⁻⁶	4.	54×10	0- e

4. 美国天空实验室: 10兆赫晶体

灵敏平均值为4.48×10⁻°克/厘米2·赫,按显著度为0.05估计(自由 度 为 2, t分

布的双侧分位数为4.303), 母体的置信区 间为3.719~5.236×10⁻⁹克/厘米²·赫。而 10兆赫晶体的理论灵敏度为4.43×10⁻⁹克/厘米²·赫, 在置信区间内。

校验方法:真空中沉积DC-705扩散泵油,用椭圆偏振测厚仪检测膜厚。 数据来源: R.Naumann et al, NASA Technical Memorandum N73-31412, NASA TM X-64778, D.C.29546

皮	晶体	频差	于涉厚度	质量厚度	灵敏度		
厅 亏	编号	(赫)	(埃)	(克/ 厘米 2)	(克/厘米 ² ・赫)		
1	4	18129	479	7.951 × 10 ⁻⁵	4.386×10 ⁻⁹		
2	0	61789	1547	2.568×10-4	4.156 \times 10 ⁻⁹		
3	4	62478	1547	2.568×10^{-4}	4.110×10 ⁻⁹		
4	11	62441	1685	2.797×10-4	4.480×10-9		
5	27	64529	1685	2.797×10-4	4.335×10-°		
6	20	62569	1756	2.915×10-4	4.659×10-°		
7	56	63427	1756	2.915×10-*	4.596×10^{-9}		
8	11	15623	456	7.570×10 ⁻⁵	4.845×10->		
9	56	16652	456	7.570×10^{-5}	4.546×10-9		
10	0	34308	869	1.443×10-4	4.205×10-»		
11	20	34685	869	1.443×10-4	4.159×10-9		
12	31	51215	1505	2.498×10^{-4}	4.878×10-9		
13	61	5 5417	1505	2.498 × 10 ⁻⁴	4.508×10^{-9}		

5.兰州物理所, 10兆赫晶体

灵敏度平均值为4.451×10⁻⁹克/厘米²•赫,按显著度为0.05估计(自由度为12, t分布的双侧分位数为2.179),母体的置信区间为4.297~4.605×10⁻⁹克/厘米²•赫。 **而**10兆赫晶体的理论灵敏度为4.43×10⁻⁹克/厘米²•赫,在置信区间内。

校验方法: 溅射镀钽膜,比较片用干涉显微镜测膜厚,然后按钽的固体密度16.6克 /**厘米**³计算质量厚度。

数据来源:SF-3石英晶体微量天平灵敏度校验报告,1981年11月。

注:编号0、11、27、31四片晶体切角35°12′,编号4、20、56、61四片晶体切角 37°03′。

• 9 •