换热器结构及热力学参数对自由活塞斯特林发动机性能影响

Effects of Heat Exchangers Structure and Thermodynamic Parameters on the Performance of a Free-piston Stirling Engine

  • 摘要: 自由活塞斯特林发动机的输出性能受到多个参数的影响,深入分析自由活塞斯特林发动机内部换热器结构及热力学参数,有助于优化发动机的设计并提高整体性能。基于SAGE软件建立了空间千瓦级自由活塞斯特林发动机热力学模型,选取了热端温度、冷端温度、充气压力、回热器孔隙率、填料丝径和配气活塞相位角等6个参数,探讨不同换热器结构(纤维-管式、丝网-管式、纤维-翅片式、丝网-翅片式)和热力学参数对斯特林发动机输出性能的影响。研究结果表明:斯特林发动机的输出功率和热功转换效率随热端温度的增大而增大,随丝网直径和孔隙率的增加先增大后减小。其中,孔隙率对斯特林发动机的输出功率和热功转换效率的影响较大,在孔隙率为0.9时,斯特林发动机的最大输出功率和热功转换效率分别为15.38 kW和32.48%。在不同换热器结构中,纤维-管式和丝网-管式结构的热功转换效率最大值分别为37.04%和36.23%,较于翅片式结构,管式结构能够实现更高的热功转换效率。采用纤维-翅片式和丝网-翅片式结构的最大输出功率分别达到20.25 kW和20.73 kW,且翅片式加热器结构表现出最佳的热力性能。综上,深入分析了不同换热器结构对输出性能的影响,还探讨了在不同热力学参数条件下,斯特林发动机的输出功率和热功转换效率的变化规律,为空间千瓦级自由活塞斯特林发动机的性能优化提供了理论基础。

     

    Abstract: The output performance of a free-piston Stirling engine is affected by multiple parameters. Analyzing the internal heat exchanger structure and thermodynamic parameters of a free-piston Stirling engine can aid in optimizing the engine design and enhancing thermal performance. In this study, a thermodynamic model of a free-piston Stirling engine for space power generation is established based on SAGE software, and six parameters, such as the hot-end temperature, cold-end temperature, charging pressure, regenerator’s porosity, wire diameter, and displacer phase angles are selected to explore the effects of different heat exchanger structures (fiber-tubular, screen-tubular, fiber-fin, screen-fin) and thermodynamic parameters on the output performance of the free-piston Stirling engine. The investigation compares the performance of the woven screen matrix/random fiber matrix structure regenerator with that of the fin heater/tubular heater in terms of the thermodynamic parameters, the effects of different heat exchanger structures, and input parameters on the free-piston Stirling engine output performance. The results indicate that the output power and thermal-to-power efficiency of the free-piston Stirling engine increase with the increase of the hot end temperature, and increase and then decrease with the rise of the wire diameter and porosity. The regenerator porosity significantly impacts the output power and thermal-to-power efficiency, and the maximum output power and thermal-to-power efficiency are 15.38 kW and 32.48%, respectively, at a porosity of 0.9. Among the different heat exchanger structures, the maximum values of the thermal-to-power efficiency are 37.04% and 36.23% for the fiber-tubular and screen-tubular structures, respectively, and the tubular heater structures can achieve higher thermal-to-power efficiencies compared to the fin heater structures for different variations of the input parameters. Additionally, the maximum output power for fiber-fin and screen-fin structures reaches 20.25 kW and 20.73 kW, respectively, and the fin heater structure demonstrates superior thermal performance. In conclusion, this paper not only provides a comprehensive analysis of the influence of different heat exchanger structures on output performance but also explores the trends of output power and thermal-to-power efficiency under different thermodynamic parameters. This research contributes a theoretical basis for the performance optimization of free-piston Stirling engines for space applications.

     

/

返回文章
返回