Study on Direct Growth of Carbon Nanotubes Induced by Electric Field
-
摘要: 本文将电场诱导与热化学气相沉积(CVD)直接生长技术相结合,在合金基底上得到了垂直排列的多壁碳纳米管(MWNT)薄膜,MWNT直径约50 nm、长度约2~3 μm。施加电场生长的MWNT的晶体性优于未加电场生长的MWNT,它们的拉曼光谱中D峰与G峰强度比值ID/IG平均值分别为0.76和0.87。垂直排列的MWNT与随机排列的MWNT的开启电场分别为3.0 V/μm和3.8 V/μm;在相同的测试电场下,前者有更高的场发射电流密度,低电流发射稳定性良好,但是MWNT相对密集,电场屏蔽效应较强。采取措施进一步调节MWNT的间距,将有助于提升发射电流密度。Abstract: In this paper,the electric field is applied in the direct Chemical Vapor Deposition(CVD)growth of CNTs to obtain vertically arranged multi-walled carbon nanotube(MWNT)films on alloy substrates.The diameter of the MWNT is about 50 nm and the length is about 2~3 μm.The crystallinities of the MWNTs are better than those grown without electric field,and the average ratios of Raman spectrum D peak to G peak intensities ID/IG are 0.76 and 0.87,respectively.Com-pared with randomly arranged carbon nanotubes,the vertically aligned carbon nanotubes obtained in this work exhibit higher field emission current densities under the same electric field,and the turn-on electric fields are 3.0 V/μm and 3.8 V/μm,respectively.The aligned MWNT emitters presented good emission stability in low emission level,but the dense MWNT distribution result in high electric field shielding effect.Therefore,further attempts to adjust the MWNT spaces will be helpful to increase the emission current density.
-
-
[1] MATTHEW T C, VITO C, WILLIAM I M. Horizontal carbon nanotubealignment[J].Nanoscale, 2016, 8(35):15836-15844.
[2] ZHANG Y G, CHANG A, CAO J, et al. Electric-field-directed growth of aligned single-walled carbon nanotubes[J]. Applied Physics Letters, 2001, 79(19):3155-3157.
[3] CHHOWALLA M, TEO K B K, DUCATI C, et al. Growth pro cess conditions of vertically aligned carbon nanotubes using plasma enhanced chemical vapor deposition[J]. Journal of Ap plied Physics, 2001, 90(10):5308-5317.
[4] BAGHGAR M, ABDI Y, ARZI E. Effects of magnetic and electric fields on the growth of carbon nanotubes using plasma en hanced chemical vapor deposition technique[J]. The European Physical Journal-Applied Physics, 2009, 48(2):429-452.
[5] BAO Q L,PAN C X. Electric field induced growth of well aligned carbon nanotubes from ethanol flames[J]. Nanotech nology, 2006, 17(4):1016-1021.
[6] YANG X H, MA H I, ZENG F G. Observation of field emission from carbon nanoparticles film coating on top of vertically aligned carbon nanotubes on silicon substrate[J]. Vacuum, 2019, 167:113-117.
[7] LONE M Y, KUMAR A, HUSAIN S, et al. Growth of carbon nanotubes by pecvd and its applications:a review[J]. Current Nanoscience, 2017, 13:536-546.
[8] MEYYAPPAN M, DELZEIT L, CASSELL A, et al. Carbon nanotube growth by PECVD:a review[J]. Plasma Sources Sci. Technol., 2003, 12:205-216.
[9] LANCE D, IAN M, BRETT A, et al. Growth of multiwall car bon nanotubes in an inductively coupled plasma reactor[J]. Journal of Applied Physics, 2002, 91(9):6027-6033.
[10] TEO K B K, CHHOWALLA M, AMARATUNGA G A J, et al. Uniform patterned growth of carbon nanotubes without surface carbon[J]. Applied Physics Letters, 2001, 79(10):1534- 1536.
[11] PAL A F, RAKHIMOVA T V, SUETINB N V, et al. Effect of the electric field of the anode sheath on the growth of aligned carbon nanotubes in a glow discharge[J]. Plasma Physics Re ports, 2007, 33(1):43-53.
[12] ZHOU W W, DING L, YANG S W, et al. Orthogonal orienta tion control of carbon nanotube growth[J]. Journal of the American Chemical Society, 2010, 132(1):336-341.
[13] YING X, ZUBAIR A, ZICHAO M, et al. Low temperature syn thesis of high-density carbon nanotubes on insulating sub strate[J]. Nanomaterials, 2019, 9(3):473.
[14] BAO Q L, ZHANG H, PAN C X. Simulation for growth of multi-walled carbon nanotubes in electric field[J]. Computa tional Materials Science, 2007, 39(3):616-626.
[15] 周彬彬, 张建, 何剑锋. 基于CVD直接生长法的碳纳米管场发射阴极[J]. 真空, 2018, 55(5):10-14. [16] LIAO C W, ZHANG Y P, PAN C X. High-voltage electricfield-induced growth of aligned"cow-nipple-like"submi cro-nano carbon isomeric structure via chemical vapor depo sition[J]. JournalofApplied Physics, 2012, 112(11):114310.
[17] AVIGAL Y, KALISH R. Growth of aligned carbon nanotubes by biasing during growth[J]. Applied Physics Letters, 2001, 78(16):2291-2293.
[18] LIU P, SUN Q, ZHU F, et al. Measuring the work function of carbon nanotubes with thermionic method[J]. Nano Letters, 2008, 8(2):647-651.
[19] MASASHI S, MASAFUMI A. Work function of carbon nano tubes[J]. Carbon, 2001, 39(12):1913-1917.
[20] NILSSON L, GROENING O, EMMENEGGER C, et al. Scan ning field emission from patterned carbon nanotube films[J]. Applied Physics Letters, 2000, 76(15):2071-2073.
计量
- 文章访问数: 4
- HTML全文浏览量: 0
- PDF下载量: 1