高功率空间电推进技术发展研究

耿海, 吴辰宸, 孙新锋, 王紫桐, 贾艳辉, 吕方伟, 蒲彦旭

耿海, 吴辰宸, 孙新锋, 等. 高功率空间电推进技术发展研究[J]. 真空与低温, 2022, 28(1): 14-25. DOI: 10.3969/j.issn.1006-7086.2022.01.002
引用本文: 耿海, 吴辰宸, 孙新锋, 等. 高功率空间电推进技术发展研究[J]. 真空与低温, 2022, 28(1): 14-25. DOI: 10.3969/j.issn.1006-7086.2022.01.002
GENG Hai, WU Chenchen, SUN Xinfeng, et al. The High Power Space Electric Propulsion Technology[J]. VACUUM AND CRYOGENICS, 2022, 28(1): 14-25. DOI: 10.3969/j.issn.1006-7086.2022.01.002
Citation: GENG Hai, WU Chenchen, SUN Xinfeng, et al. The High Power Space Electric Propulsion Technology[J]. VACUUM AND CRYOGENICS, 2022, 28(1): 14-25. DOI: 10.3969/j.issn.1006-7086.2022.01.002

高功率空间电推进技术发展研究

基金项目: 

国家自然科学基金(61801201、62101227);甘肃省杰出青年基金(20JR10RA481);国防科工局基础科研项目(JCKY2018203B030)

详细信息
    作者简介:

    耿海,研究员,主要从事空间电推进技术研究与工程研制。E-mail:marineen115@163.com。

  • 中图分类号: V439

The High Power Space Electric Propulsion Technology

  • 摘要: 面向未来深空探测、空间货运等空间任务对具有牛级大推力、数千秒比冲、数万小时寿命等性能高功率电推进技术的应用需求,通过调研对比分析的方式,详细论述了国内外高功率电推进技术的发展现状和趋势,并针对具体技术路线给出了展望。从高功率电推进技术发展和工程应用的角度,总结梳理了磁场拓扑结构设计与优化、系统效率提升、地面性能诊断测试与评价、高热防护及抑制、空间高压大电流电源、系统集成设计及智能化控制等共性技术难点,为国内高功率电推进技术的发展进步提供参考和帮助。
    Abstract: The high power space electric propulsion with thrust larger than 1 N,specific impulse larger than thou-sands seconds and life span tens of thousands of hours is needed for the future space missions such as deep space explora-tion and space freight etc.In this work,the high power space electric propulsion technologies at home and abroad are intro-duced,and the prospects of every technology are discussed.Moreover,the key common technologies of high power sup-ply,magnetic field topology optimization,thermal protection and test are also extracted from the perspective of the space application.And which will be benefit for the development of high power electric propulsion.
  • [1]

    GOEBEL D M,KATZ I.Fundamentals of electric propulsion:ion and Hall thrusters[M].USA:John Wiley&Sons Inc,2008.

    [2]

    LEPORINI A,GIANNETTI V,ANDREUSSI T,et al.Development of a 20 kW-class Hall thruster[C]//Marriott Park Hotel,Rome,Italy:Space Propulsion,2016.

    [3] 杭观荣,梁伟,张岩,等.大功率等离子体电推进研究进展[J].载人航天,2016,22(2):175-185.
    [4]

    KIM V,MANZELLA D,MURASHKO V,et al.High-power Hall devices:status and current challenges[C]//Istanbul,Turkey:International Symposium on Energy Conversion Fundamentals Held,2005.

    [5]

    LIANG R.The combination of two concentric discharge channels into a nested hall-effect thruster[D].Detroit:University of Michigan,2013.

    [6]

    BENJAMIN A J,ALEC D G.Update on the nested hall thruster subsystem for the next STEP XR-100program[C]//Cincinnati,Ohio USA:JPC-NASA,2018.

    [7]

    HANI K,THOMAS W H,DAVID T J,et al.Performance evaluation of the NASA-300M 20 kW Hall effect thruster[C]//San Diego,California:47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,2011.

    [8]

    PETERSON P,JACOBSON D,MANZELLA D,et al.The performance and wear characterization of a high power high-isp NASA Hall thruster[C]//Tucson,USA:41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,2005.

    [9]

    ROLAND E F,SCOTT J H,ALEC D G,et al.First firing of a 100 kW nested-channel Hall thruster[C]//The George Washington University,District of Columbia,USA:33th International Electric Propulsion Conference,2013.

    [10]

    GEORGE C S,THOMAS W H,DANIEL A H,et al.Performance test results of the NASA-457M v2 Hall thruster[R].NASA/TM-2012-217711/AIAA-2012-3940,USA:Glenn Research Center,2012.

    [11] 康小录,张岩,刘佳,等.大功率霍尔电推进研究现状与关键技术[J].推进技术,2019,40(1):1-11.
    [12]

    Fauske H K.Boiling heat transfer and two-phase flow[J].Nuclear Science and Engineering:the Journal of the American Nuclear Society,1966,25(4):448-449.

    [13]

    LEV D,CHOUEIRI E Y.Scaling of efficiency with applied magnetic field in magne to plasma dynamic thruster[J].Journal of Propulsion and Power,2012,28(3):609-616.

    [14]

    BOXBERGER A.HERDRICH G.Integral measurements of 100 kW class steady state applied-field magne to plasma dynamic thruster SX3 and perspectives of AF-MPD technology[C]//Atlanta,Georgia,USA:35th International Electric Propulsion Conference Georgia Institute of Technology,2017.

    [15]

    WEGMANN T,KUTTZ M A,HABIGER H A,et al.Experimental investigation of steady state high power MPD thrusters[C]//Nashville:AIAA,28th SAE,ASME,and ASEE Joint Propulsion Conference and Exhibit,1992.

    [16] 汤海滨,王一白,魏延明,等.磁等离子体动力推力器回顾和认识[J].推进技术,2018,39(11):2401-2414.
    [17]

    TOKI K,SHIMIZU Y.A study of low-power MPD arc jets for future high-power evolution[C]//Pasadena,USA:27th International Electric Propulsion Conference,2001.

    [18]

    LONGMIER B W,SQUIRE J P,CASSADY L D,et al.VASIMR VX-200 performance measurements and helicon throttle tables sing argon and krypton[C]//USA:International Electric Propulsion Conference,2011.

    [19]

    DIAZ F R C.The VASIMR rocket[J].Scientific American,2000,283(5):90-97.

    [20]

    SQUIRE J P,DÍAZ F R C,JACOBSON V T,et al.Experimental research progress toward the VASIMR engine[C]//Toulouse,France:28th International Electric Propulsion Conference,2003.

    [21]

    SQUIRE J P,OLSEN C S,CHANG DÍAZ F R,et al.VASIMR VX-200 operation at 200 kW and plume measurements:fu-ture plans and an ISS EP test platform[C]//Wiesbaden,Germany,32nd International Electric Propulsion Conference,2011.

    [22] 孙斌,赵杨,魏建国,等.30 kW级磁等离子体发动机实验研究[C]//第十二届中国电推进学术研讨会,2016.
    [23] 孙青林,杨雄,程谋森.可变比冲磁等离子体推力器搭建及点火验证[C]//第十六届电推进学术研讨会,2020.
    [24] 孙新锋,温晓东,张天平.高功率等离子体电推进技术研究进展[J].真空与低温,2017,23(6):311-317.
    [25]

    JOSHUA M W,CHRISTOPHER L S,TATE M G,et al.Performance measurements of a rotating magnetic field thruster[C]//AIAA Propulsion and Energy Forum August 24-28,2020.

    [26]

    KURT P,ADAM M,JUSTIN L,et al.State-of-the-art and advancement paths for inductive pulsed plasma thrusters[R].Aerospace,2020.

    [27]

    POTRIVITU G C,SUN Y F,et al.A review of low-power electric propulsion researchat the space propulsion centre singapore[J].Aerospace,2020,7(6):67.

    [28]

    FURUKAWA T,TAKIZAWAK,KUWAHARA D,et al.Electrodeless plasma acceleration system using rotating magnetic field method[J].Aip Advances,2017,7(11):115204.

    [29]

    ZIEMBA T,JOHN C J,SLOUGH J.High power helicon thruster[C]//Tucson,USA:41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference&Exhibit,2005.

    [30] 丁亮,张尊,彭毓川,等.吸气式电推进高真空环境试验验证[C]//第十六届电推进学术研讨会,2020.
    [31]

    POLZIN K A.Comprehensive review of planar pulsed inductive plasma thruster research and technology[J].Journal of Propulsion and Power,2011,27(3):513-531.

    [32] 程谋森,李小康,车碧轩,等.感应式脉冲等离子体推力器技术综述[J].空间控制技术与应用,2017,43(5):1-6.
  • 期刊类型引用(6)

    1. 汤海滨,潘若剑,毛仁凡,崔云蔚,任军学. 电推进粒子网格法模拟中计算加速方法的研究综述. 推进技术. 2024(08): 6-30 . 百度学术
    2. 王紫桐,贺亚强,蒲彦旭,耿海,王珏,温正,陈强强,岳士超. 空间超高比冲推进技术综述. 真空与低温. 2024(05): 535-543 . 本站查看
    3. 孙明明,耿海,郭宁,高俊,李沛,王尚民,刘明正,刘超. LHT-200霍尔推力器热特性模拟分析. 真空与低温. 2024(06): 651-657 . 本站查看
    4. 任军学,潘若剑,毛仁凡,汤海滨. 电推进粒子模拟中并行化方法研究综述. 推进技术. 2023(06): 160-180 . 百度学术
    5. 贾英宏,孟文沁. 电推进在航天器姿态控制中的研究综述. 推进技术. 2023(07): 107-122 . 百度学术
    6. 龙丹,郑茜,刘畅,尤浩琦,杜婷,刘佩佩. 国内外航空电推进技术发展现状及趋势. 天津科技. 2022(08): 37-41+45 . 百度学术

    其他类型引用(7)

计量
  • 文章访问数:  28
  • HTML全文浏览量:  0
  • PDF下载量:  11
  • 被引次数: 13
出版历程
  • 收稿日期:  2021-10-27
  • 网络出版日期:  2023-05-23

目录

    /

    返回文章
    返回
    x 关闭 永久关闭