Citation: | LIU J N,YANG J C,ZHONG W R,et al. Research on heat transfer characteristics of air ambient vaporizer for supercritical hydrogen[J]. Vacuum and Cryogenics,2024,30(4):408−416. DOI: 10.12446/j.issn.1006-7086.2024.04.009 |
Liquid hydrogen has the advantages of high density and being able to be stored at atmospheric pressure, making it more suitable for storage and transportation than high-pressure gaseous hydrogen. In current liquid storage gas refueling hydrogen refueling stations, the stored liquid hydrogen needs to be pressurized and gasified, and can only be used for fueling after being transformed into high-pressure gaseous supercritical hydrogen in an Air Ambient Vaporizer(AAV). For the design of AAV, currently only basic heat transfer calculation formulas are used as guidance, and there is a lack of exploration of the heat transfer characteristics of specialized vaporizer used for high-pressure (45 MPa) supercritical fluids. The numerical simulation methods and Fluent software were used to calculate the overall coupled heat transfer model, including the internal and external flow fields and the solid domain of the pipe wall. Using the obtained overall heat transfer coefficient as a reference, the special structure of the vaporizer, the temperature and flow state of the air domain, and the inlet temperature and flow rate of the supercritical hydrogen were discussed. The results are helpful for the design and calculation of similar vaporizers, and also provide reference for the overall layout of vaporizers during actual operation.
[1] |
薛明喆,师存阳,刘家宁,等. 液氢加氢站及其关键装备的发展现状及展望[J]. 同济大学学报(自然科学版),2023,51(12):1959−1971.
|
[2] |
董林鑫. 基于不同增压方式的液氢加氢站加氢流程研究[D]. 杭州:浙江大学,2023.
|
[3] |
杨睿杰. 空温式气化器传热特性数值分析[D]. 西安:西安石油大学,2019.
|
[4] |
李凯月. 大型液化天然气空温式气化器传热性能研究[D]. 济南:山东建筑大学,2020.
|
[5] |
SUN B,WADNERKAR D,UTIKAR R P,et al. Modeling of cryogenic liquefied natural gas ambient air vaporizers[J]. Industrial & Engineering Chemistry Research,2018,57:9281−9291.
|
[6] |
SONG Y Q,KAVIYANI O,BARNOON P,et al. Numerical analysis of heat transfer in peripheral air vaporizers used in cryogenic storage tanks[J]. Journal of Energy Storage,2021,40:102774. doi: 10.1016/j.est.2021.102774
|
[7] |
陈叔平,常智新,韩宏茵,等. 空温式翅片管气化器自然对流换热的数值模拟[J]. 低温与超导,2011,39(6):58−63.
|
[8] |
常智新. 空温式翅片管气化器传热特性研究及数值模拟[D]. 兰州:兰州理工大学,2011.
|
[9] |
MA G G,ZHANG C,ZHAO L C. Analysis on heat transfer effect of air-temperature vaporizer in LNG satellite station[J]. Advances in Mechanical Engineering,2017,9(6):1−11.
|
[10] |
REN L M,JIAO W L,TIAN X H,et al. Effect of frost layer on heat transfer of cryogenic fluid in a finned tube[J]. Cryogenics,2020,109:103115. doi: 10.1016/j.cryogenics.2020.103115
|
[11] |
KWON J,YUN S,LEE S,et al. Air-side heat transfer characteristics of ambient air vaporizers with various geometric parameters under cryogenic frosting conditions[J]. International Journal of Heat and Mass Transfer,2022,184:122245. doi: 10.1016/j.ijheatmasstransfer.2021.122245
|
[12] |
韩宏茵. 深冷翅片管气化器管内相变换热研究[D]. 兰州:兰州理工大学,2012.
|
[13] |
李文奇,陈叔平,金树峰,等. 空温式翅片管气化器冷热流体传热特性仿真研究[J]. 化工机械,2020,47(4):467−472.
|
[14] |
陈叔平,韩宏茵,谢福寿,等. 翅片管气化器管内相变传热流动数值模拟[J]. 低温与超导,2012,40(2):52−56.
|
[15] |
刘珊珊. LNG空温式气化器传热机理及内外场耦合传热特性[D]. 哈尔滨:哈尔滨工业大学,2017.
|
[16] |
LIU S S,JIAO W L,WANG H C. Three-dimensional numerical analysis of the coupled heat transfer performance of LNG ambient air vaporizer[J]. Renewable Energy,2016,87:1105−1112. doi: 10.1016/j.renene.2015.08.037
|
[17] |
王明秋. 深冷翅片管气化器表面流场数值模拟与结霜实验研究[D]. 兰州:兰州理工大学,2017.
|
[18] |
冼丽珊,焦文玲,杨帆,等. LNG空温式气化器支腿高度数值模拟研究[J]. 煤气与热力,2021,41(6):6−11.
|
[19] |
OH G,LEE T,JEONG H,et al. A Study on the air flow outside ambient vaporizer fin[J]. IOP Conference Series:Materials Science and Engineering,2015,88(1):012006. doi: 10.1088/1757-899X/88/1/012006
|
[20] |
ANDERSON J D. 计算流体力学入门[M]. 姚朝晖,周强,编译. 北京:清华大学出版社,2010.
|
[21] |
杨世铭. 传热学[M]. 北京:高等教育出版社,2006.
|
[22] |
黄禹,沈飚,张鹏,等. 超临界流体传热综述[J]. 低温与超导,2008,36(10):44−50.
|
[23] |
PIORO I L,KHARTABIL H F,DUFFEY R B. Heat transfer to supercritical fluids flowing in channels-empirical correlations (survey)[J]. Nuclear Engineering and Design,2004,230(1/3):69−91. doi: 10.1016/j.nucengdes.2003.10.010
|
[24] |
LIAO S M,ZHAO T S. An experimental investigation of convection heat transfer to supercritical carbon dioxide in miniature tubes[J]. International Journal of Heat and Mass Transfer,2002,45(25):5025−5034. doi: 10.1016/S0017-9310(02)00206-5
|
[25] |
BERG V R L,WILLIAMSON K D,EDESKUTY F J. Forced-convection heat transfer to nitrogen in the vicinity of the critical point[C]//Advances in Cryogenic Engineering:Proceedings of the 1969 Cryogenic Engineering Conference University of California at Los Angeles,1969.
|