Citation: | WANG Z T,HE Y Q,PU Y X,et al. Review of space ultra-high specific impulse propulsion technology[J]. Vacuum and Cryogenics,2024,30(5):535−543. DOI: 10.12446/j.issn.1006-7086.2024.05.010 |
Specific impulse is the core index to measure the efficiency of space propulsion system, and it is an eternal pursuit to continuously improve the specific impulse of space propulsion. At present, complex space mission represented by Jupiter's far-planet interplanetary exploration require space propulsion system to achieve ultra-high specific impulse. This paper systematically summarizes technical routes of ultra-high specific impulse propulsion, and expounds the technical approaches to achieve ultra-high specific impulse from the aspects of electrostatic acceleration mechanism, electromagnetic field acceleration mechanism, new propellant acceleration mechanism, and new energy acceleration mechanism. The key technology of improving specific impulse is analyzed, and the development suggestions of ultra-high specific impulse technology are put forward.
[1] |
张天平,杨福全,李娟,等. 离子电推进技术[M]. 北京:科学出版社,2020.
|
[2] |
耿海,李婧,吴辰宸,等. 空间电推进技术发展及应用展望[J]. 气体物理,2023,8(1):1−16.
|
[3] |
张雪儿,李得天,张天平. 电推进三种比冲的定义及其工程应用[J]. 真空与低温,2020,26(6):486−493. doi: 10.3969/j.issn.1006-7086.2020.06.011
|
[4] |
GOEBEL D M ,KATZ I. Fundamentals of Electric Propulsion:Ion and Hall thrusters[M]. New Jersey:John Wiley & Sons,Inc. ,2008.
|
[5] |
POLK J E,GOEBEL D,BROPHY J R,et al. An overview of the nuclear electric xenon ion system (NEXIS) program[C]//Huntsville,Alabama:39th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2003.
|
[6] |
FOSTER J E ,HAAG T,KAMHAWI H ,et al. The High Power Electric Propulsion (HiPEP) ion thruster[C]//Fort Lauderdale,Florida:40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2004.
|
[7] |
LOVTSOV A S,SELIVANOV M Y,KOSTIN A N,等. 大功率离子推力器和流动控制单元验证现状及其2000小时寿命试验[J]. 推进技术,2020,41(1):109-120.
|
[8] |
鹿畅,曹勇,夏广庆,等. 离子推力器双阶栅极系统引出性能研究[J]. 推进技术,2022,43(3):392−398.
|
[9] |
BRAMANTI C,WALKE R,SUTHERLAND O,et al. The innovative dual-stage 4-grid ion thruster concept - theory and experimental results[C]//Valencia,Spain:the International Astronautical Federation,2006.
|
[10] |
SANGHVI R,NI D,GUND V,et al. Application of microelectromechanical-system based RF linear accelerators for ultra-high specific impulse ion micropropulsion[C]//Virtual Event:AIAA Propulsion and Energy Forum,2021.
|
[11] |
PU Y X,ZHANG W S,LI X D,et al. Inductive coupling discharge characteristics of a 10 cm dual-stage 4-grid radiofrequency ion thruster[J]. Journal of Aerospace Technology and Managemen,2021,13(2):e4321.
|
[12] |
徐宗琦,蔡东升,王平阳,等. 铋工质阳极层推力器的研究与发展[J]. 上海航天(中英文),2023,40(2):82-89.
|
[13] |
康小录,丁梦想,刘佳. 阳极层霍尔电推进技术研究现状与难点分析[J]. 推进技术,2023,44(7):30-40.
|
[14] |
吴辰宸,耿海,王紫桐,等. 地月及深空探测先进电推进技术的发展[J]. 中国空间科学技术,2023,43(5):13−23.
|
[15] |
杭观荣,李诗凝,康小录,等. 霍尔电推进空间应用现状及未来展望[J]. 推进技术,2023,44(6):28−41.
|
[16] |
LIU X Y,LI H,JIANG Z Y,et al. Improving the specific impulse of Hall thrusters using a wide channel design[J]. Journal of Physics D:Applied Physics,2024,57(25):255202. doi: 10.1088/1361-6463/ad33fb
|
[17] |
刘子健,沈岩,耿金越,等. 场发射电推力器的参数选择与调控方法[J]. 中国空间技术,2020,40(4):1−10.
|
[18] |
陈茂林,刘旭辉,周浩浩,等. 适用于微纳卫星的微型电推进技术研究进展[J]. 固体火箭技术,2021,44(2):188−206.
|
[19] |
CONDE L,MALDONADO P E,DAMBA J,et al. Physics of the high specific impulse alternative low power hybrid ion engine (alphie):Direct thrust measurements and plasma plume kinetics[J]. Journal of Applied Physics,2022,131(2):023302.
|
[20] |
李永,周成,吕征,等. 大功率空间核电推进技术研究进展[J]. 推进技术,2020,41(1):12−27.
|
[21] |
ZHENG J X,LIU H Y,SONG Y T,et al. Integrated study on the comprehensive magnetic-field configuration performance in the 150 kW superconducting magnetoplasmadynamic thruster[J]. Scientific Reports,2021,11(1):20706.
|
[22] |
GIAMBUSSO M ,DÍAZ F C ,CORRIGAN A ,et al. Steady-state testing in the VASIMR VX-200SSTM project[C]//Las Vegas,Nevada & Virtual:Advanced Space Propulsion and Energy Systems,2021.
|
[23] |
耿海,吴辰宸,孙新锋,等. 高功率空间电推进技术发展研究[J]. 真空与低温,2022,28(1):14−25.
|
[24] |
陈兴,张岩,康小录. 大发射电流空心阴极研制的工程难点探讨[J]. 真空电子技术,2021(4):1−10.
|
[25] |
Ultra-high specific impulse lithium-fueled ion thruster for interstellar precursor mission concepts[EB/OL]. [2024-04-30]. Washington DC :Jet Propulsion Laboratory,2016. https://techport.nasa.gov/view/92660.
|
[26] |
杜邦登,邢宝玉,叶继飞,等. 纳秒激光烧蚀金属推进性能的实验研究[J]. 红外与激光工程,2020,49(S2):139−146.
|
[27] |
张泽,薛翔,王园丁,等. 空间核动力推进技术研究展望[J]. 火箭推进,2021,47(5):1−13. doi: 10.3969/j.issn.1672-9374.2021.05.001
|
[28] |
宋俊. 核聚变空间推进器的初步需求分析[J]. 航空动力学报,2022,37(7):1496−1520.
|
[29] |
MIERNIK J,STATHAM G,FABISINSKI L,et al. Z-Pinch fusion-basednuclearpropulsion[J]. Acta Astronautica,2013,82(2):173-182.
|
[30] |
李凤臣,汤颖杰,赵俊龙,等. 深空探测聚变推进装置技术路线与研究现状综述[J]. 推进技术,2023,44(6):12−27.
|
[31] |
GAIDOS G,LAIHO J,LEWIS R A,et al. Antiproton-catalyzed Microfission/fusion Propulsion Systems for Explorating of the outer Solar System and Beyond[J]. AIP Conference Proceeding,1998,420(1):1365-1372.
|
[32] |
GAIDOS G,LEWIS R A,MEYER K,et al. AIMStar:Antimatter initiated microfusion for pre-cursor interstellar missions[J]. Acta Astronautica,1999,44(2/4):183-186.
|
[33] |
WEED R W,MACHACEK J,RAMAMURTHY B. Radioisotope positron propulsion[R]. NIAC Phase I Report,20190018063,California:NASA,2019.
|
[34] |
JACHSON G P. Antimatter-based propulsion for expoplanet exploration[J]. Acta Astronautica,2022,208:1−6.
|