Citation: | HUANG C T,YE N N,SHAO H Z,et al. Low pressure gas sensing techniques based on carbon nanotube-metal Schottky contacts[J]. Vacuum and Cryogenics,2024,30(6):623−628. DOI: 10.12446/j.issn.1006-7086.2024.06.004 |
Carbon nanotube (CNT) has unique structure and excellent physical property. It can be used potentially in gas sensing due to gas adsorptions in CNT-metal contact. The CNT-FET and CNT/Au resistance sensors based on the CNT-metal Schottky junction were constructed by the lift-off and dielectrophoretic (DEP) processes. The sensing performances of two devices were tested for hydrogen and nitrogen gases in low pressure range of 10−7~10−5 Pa. The currents of CNT-FET and CNT/Au resistance sensors increased 0.05 μA and 0.14 μA, respectively, which exhibit similar hydrogen sensing performance. The research results have explored a new approach of low pressure sensing.
[1] |
HILLS G,LAU C,WRIGHT A,et al. Modern microprocessor built from complementary carbon nanotube transistors[J]. Nature,2019,572(7771):595−602. doi: 10.1038/s41586-019-1493-8
|
[2] |
PENG L M,ZHANG Z,QIU C. Carbon nanotube digital electronics[J]. Nature Electronics,2019,2(11):499−505. doi: 10.1038/s41928-019-0330-2
|
[3] |
ATES M,EKER A A,EKER B. Carbon nanotube-based nanocomposites and their applications[J]. Journal of Adhesion Science and Technology,2017,31(18):1977−1997. doi: 10.1080/01694243.2017.1295625
|
[4] |
XIAO Z,KONG L B,RUAN S,et al. Recent development in nanocarbon materials for gas sensor applications[J]. Sensors and Actuators B:Chemical,2018,274(20):235−267. doi: 10.1016/j.snb.2018.07.040
|
[5] |
JAVEY A,GUO J,WANG Q,et al. Ballistic carbon nanotube field-effect transistors[J]. Nature,2003,424(6949):654−657. doi: 10.1038/nature01797
|
[6] |
ZHANG M,BROOKS L L,CHARTUPRAYOON N,et al. Palladium/single-walled carbon nanotube back-to-back Schottky contact-based hydrogen sensors and their sensing mechanism[J]. ACS Applied Materials & Interfaces,2014,6(1):319−326.
|
[7] |
IORDACHE S M,IONETE E I,IORDACHE A M,et al. Pd-decorated CNT as sensitive material for applications in hydrogen isotopes sensing-application as gas sensor[J]. International Journal of Hydrogen Energy,2021,46(18):11015−11024. doi: 10.1016/j.ijhydene.2020.12.193
|
[8] |
SUEHIRO J,HIDAKA S I,YAMANE S,et al. Fabrication of interfaces between carbon nanotubes and catalytic palladium using dielectrophoresis and its application to hydrogen gas sensor[J]. Sensors and Actuators B:Chemical,2007,127(2):505−511. doi: 10.1016/j.snb.2007.05.002
|
[9] |
DONG C K,LUO H,CAI J,et al. Hydrogen sensing characteristics from carbon nanotube field emissions[J]. Nanoscale,2016,8(10):5599−5604. doi: 10.1039/C5NR08661B
|
[10] |
ZHAO Y,CAI J,LUO H,et al. Low pressure hydrogen sensing based on carbon nanotube field emission:Mechanism of atomic adsorption induced work function effects[J]. Carbon,2017,124:669−674. doi: 10.1016/j.carbon.2017.09.032
|
[11] |
ANDREW C Y,SRIMANI T,LAU C,et al. Foundry integration of carbon nanotube FETs with 320 nm contacted gate pitch using new lift-off-free process[J]. IEEE Electron Device Letters,2022,43(3):486−489. doi: 10.1109/LED.2022.3144936
|
[12] |
KIM J,RIM Y S,CHEN H,et al. Fabrication of high-performance ultrathin In2O3 film field-effect transistors and biosensors using chemical Lift-off lithography[J]. ACS Nano,2015,9(4):4572−4582. doi: 10.1021/acsnano.5b01211
|
[13] |
LI W,HENNRICH F,FLAVEL B S,et al. Principles of carbon nanotube dielectrophoresis[J]. Nano Research,2021,14:2188−2206. doi: 10.1007/s12274-020-3183-0
|
[14] |
DUCHAMP M,LEE K,DWIR B,et al. Controlled positioning of carbon nanotubes by dielectrophoresis:Insights into the solvent and substrate role[J]. ACS Nano,2010,4(1):279−284. doi: 10.1021/nn901559q
|
[15] |
ABDULHAMEED A,ABDUL HALIN I,MOHTAR M N,et al. The role of medium on the assembly of carbon nanotube by dielectrophoresis[J]. Journal of Dispersion Science and Technology,2020,41(10):1576−1587. doi: 10.1080/01932691.2019.1631841
|
[16] |
HAMMER B,NORSKOV J K. Why gold is the noblest of all the metals[J]. Nature,1995,376(6537):238−240. doi: 10.1038/376238a0
|
[17] |
康颂,董长昆,张纯. 基于多壁碳纳米管场发射与吸附原理的压力传感技术研究[J]. 真空与低温,2019,25(4):237−242.
|
[18] |
JUNG D,HAN M,LEE G S. Fast-response room temperature hydrogen gas sensors using platinum-coated spin-capable carbon nanotubes[J]. ACS Applied Materials & Interfaces,2015,7(5):3050−3057.
|
[19] |
DHALL S,SOOD K,NATHAWAT R. Room temperature hydrogen gas sensors of functionalized carbon nanotubes based hybrid nanostructure:Role of Pt sputtered nanoparticles[J]. International Journal of Hydrogen Energy,2017,42(12):8392−8398. doi: 10.1016/j.ijhydene.2017.02.005
|
[20] |
YU H,SCHAEKERS M,BARLA K,et al. Contact resistivities of metal-insulator-semiconductor contacts and metal-semiconductor contacts[J]. Applied Physics Letters,2016,108(17):171602.
|
[21] |
BARRIO L,LIU P,RODRIGUEZ J A,et al. A density functional theory study of the dissociation of H2 on gold clusters:Importance of fluxionality and ensemble effects[J]. The Journal of Chemical Physics,2006,125(16):164715.
|
[22] |
COLLINS P G,BRADLEY K,ISHIGAMI M,et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes[J]. Science,2000,287(5459):1801−1804. doi: 10.1126/science.287.5459.1801
|
[23] |
KONG J,FRANKLIN N R,ZHOU C,et al. Nanotube molecular wires as chemical sensors[J]. Science,2000,287(5453):622−625. doi: 10.1126/science.287.5453.622
|