LIN Wenyu, WANG Xudi. Research Progress of the Molecular Flow-Vacuum Conductance Element with Ultra-Small Flow Conductance[J]. VACUUM AND CRYOGENICS, 2022, 28(6): 720-732. DOI: 10.3969/j.issn.1006-7086.2022.06.014
Citation: LIN Wenyu, WANG Xudi. Research Progress of the Molecular Flow-Vacuum Conductance Element with Ultra-Small Flow Conductance[J]. VACUUM AND CRYOGENICS, 2022, 28(6): 720-732. DOI: 10.3969/j.issn.1006-7086.2022.06.014

Research Progress of the Molecular Flow-Vacuum Conductance Element with Ultra-Small Flow Conductance

More Information
  • Received Date: March 28, 2022
  • Available Online: September 25, 2023
  • As a key device for vacuum metrology,the vacuum conductance element plays an important role in the field of vacuum leakage detection and related measurements.Among the various types of conductance elements,molecular flow-conductance elements have attracted wide attention due to their conductance characteristics.This paper provides a brief overview of several molecular flow-vacuum conductance elements that can obtain ultra-small flow conductance.The content includes anodic aluminum oxide,silicon-based micro-nano channels,and graphene molecular flow-conductance elements.The production process and conductance test results are presented.The upper limit of molecular flow pressure of these molecular flow-vacuum conductance elements is 105Pa.This type of molecular flow-vacuum conductance element with ultra-small conductance can be used in non-evaporable getter performance evaluation,vacuum pump pumping speed testing,vacuum chamber volume determination and leak rate measurement of closed containers.
  • [1]
    刘秀林.标准漏孔及其校准[J].计测技术,2001,21(5):43-45.
    [2]
    YOSHIDA H,ARAI K,HIRATA M,et al.New leak element using sintered stainless steel filter for in-situ calibration of ionization gauges and quadrupole mass spectrometers[J].Vacuum,2012,86(7):838-842.
    [3]
    CALCATELLI A,BERGOGLIO M,MARI D.Leak detection,calibrations and reference flows:practical example[J].Vacuum,2007,81(11):1538-1544.
    [4]
    BERGOGLIO M,MARI D.Leak rate metrology for the society and industry[J].Measurement,2012,45(10):2434-2440.
    [5]
    ABBOTT P J,TISON S A.Commercial helium permeation leak standards:their properties and reliability[J].Journal of Vacuum Science & Technology A:Vacuum Surfaces & Films,1996,14(3):1242-1246.
    [6]
    IERARDI V,BECKER U,PANTAZIS S,et al.Nano-holes as standard leak elements[J].Measurement,2014,58:335-341.
    [7]
    YOSHIDA H,ARAI K,AKIMICHI H,et al.Newly developed standard conductance element for in situ calibration of high vacuum gauges[J].Measurement,2012,45(10):2452-2455.
    [8]
    FARIA D P,FONSECA A L,PEREIRA H,et al.Permeability of cork to gases[J].Journal of Agricultural & Food Chemistry,2011,59(8):3590-3597.
    [9]
    黄心源,蔡祖泉,黄绥和,等.石英膜标准漏孔的试制与测定[J].电子技术,1965(9):8-12.
    [10]
    查良镇.白金丝玻璃型标准漏孔气流特性的研究[J].清华大学学报:自然科学版,1963(4):33-52.
    [11]
    周起春.CL-1型渗氦校准漏孔[C]//中国真空学会质谱与检漏专委会年会,2001.
    [12]
    MENG D,YAN R,REN G,et al.New leak element based on graphene oxide membranes[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,and Films,2018,36(4):041603.
    [13]
    MASUDA H,YAMADA H,SATOH M,et al.Highly ordered nanochannel-array architecture in anodic alumina[J].Applied Physics Letters,1998,71(19):2770-2772.
    [14]
    BELWALKARA,GRASINGE,GEERTRUYDENWV,etal.Effect of processing parameters on pore structure and thickness of anodic aluminum oxide(AAO)tubular membranes[J].Journal of Membrane Science,2008,319(1/2):192-198.
    [15]
    WANG X,HAN G R.Fabrication and characterization of anodic aluminum oxide template[J].Microelectronic Engineering,2003,66(1/4):166-170.
    [16]
    ZHAO Y,CHENG Y,ZHANG Q,et al.New leak element using anodic aluminum oxide[J].Vacuum,2016,131:111-114.
    [17]
    WEIB,ZHAOY,WANGX,etal.Fabrication of conductancecontrollable standard leak elements on anodic aluminum oxide using a selective coating method[J].Journal of Vacuum Science & Technology B,Nanotechnology and Microelectronics:Materials,Processing,Measurement,and Phenomena,2017,35(4):040601.
    [18]
    WHITESIDES G.The origins and the future of microfluidics[J].Nature,2006,442(7101):368-373.
    [19]
    THORSENT,MAERKLSJ,QUAKESR.Microfluidic largescale integration[J].Science,2002,298(5593):580-584.
    [20]
    JIANG B,ZHANG J,WANG Y,etal.New leak element using 1D nanofluidic channels and indium sealing[J].Vacuum,2018,156:55-58.
    [21]
    杨道虹,徐晨,沈光地.乙二醇辅助多层硅/硅直接键合[J].半导体学报,2005,26(2):395-398.
    [22]
    ZHU A,ZHAO Y,WANG X,et al.New leak assembly based on fluidic nanochannels[J].Journal of Vacuum Science & Technology A,2016,34(5):050604.
    [23]
    BEESLEY M J,CASTLEDINEJG.The use of photoresist as a holographic recording medium[J].Applied Optics,1970,9(12):2720-2724.
    [24]
    GROVER W H,MATHIES R A.An integrated microfluidic processor for single nucleotide polymorphism-based DNA computing[J].Labona Chip,2005,5(10):1033-1040.
    [25]
    BLASQUEZ G,FAVARO P.Silicon glass anodic bonding under partial vacuum conditions:problems and solutions[J].Sensors and Actuators A:Physical,2002,101(1/2):156-159.
    [26]
    王多笑,邬玉亭,褚家如.低温阳极键合技术研究[J].传感器技术,2005,24(9):37-39.
    [27]
    姜彪,于振华,甘婧,等.铟封接和硅硅键合技术制作微通道型固定流导元件[J].真空科学与技术学报,2019,39(4):345-349.
    [28]
    李会录,冯佳宁,马学军.有机电致发光显示技术[J].现代显示,2003(3):10-15.
    [29]
    解亚杰,常仁超,王蓝陵,等.Ag-In共晶键合在硅-铜封接中的应用[J].真空科学与技术学报,2021,41(12):1157-1163.
    [30]
    KNECHTEL R.Glass frit bonding:an universal technology for wafer level encapsulation and packaging[J].Microsystem Technologies,2005,12(1):63-68.
    [31]
    WU G,XU D,SUN X,et al.Wafer-level vacuum packaging for microsystems using glass frit bonding[J].IEEE Transactions on Components,Packaging and Manufacturing Technology,2013,3(10):1640-1646.
    [32]
    YIFANG L,DANER C,LIWEI L,et al.Glass frit bonding with controlled width and height using a two-step wet silicon etching procedure[J].Journal of Micromechanics and Microengineering,2016,26(3):035018.
    [33]
    ZHOU W,BI H,YU Z,et al.Fabrication of the nanofluidic channels type leak assembly based on the glass frit sealing method[J].Journal of Vacuum Science & Technology B,Nanotechnology and Microelectronics:Materials,Processing,Measurement,and Phenomena,2019,37(5):050603.
    [34]
    周问天,任国华,孟冬辉,等.基于玻璃浆料键合的硅基漏孔封接工艺优化研究[J].真空科学与技术学报,2020,40(6):514-518.
    [35]
    Fazal I,Elwenspoek M C.Fusion-bonded fluidic interconnects[J].Journal of Micromechanics and Microengineering,2008,18(5):055011.
    [36]
    COX S M,KIRBY P L.Rate of crystal growth in glass[J].Nature,1947,159(4031):162-163.
    [37]
    MÜLLER R,ZANOTTO E D,FOKIN V M.Surface crystallization of silicate glasses:nucleation sites and kinetics[J].Journal of Non-Crystalline Solids,2000,274(1/3):208-231.
    [38]
    耿铁,盛洁,蔚川乐,等.玻璃析晶温度及其研究概述[J].硅酸盐通报,2017,36(11):3672-3675.
    [39]
    SHELBY J E.Introduction to glass science and technology[M].Royal Society of Chemistry,2020:7-25.
    [40]
    LIN W,ZHANG H,XI Z,et al.Nanofluidic chip on tube as standard leak elements[J].Measurement,2022,187:110343.
    [41]
    ZHANG S,SHAO Y,LIAO H,et al.Polyelectrolyte-induced reduction of exfoliated graphite oxide:a facile route to synthesis of soluble graphene nanosheets[J].ACSNano,2011,5(3):1785-1791.
    [42]
    NOVOSELOV K S,GEIM A K,MOROZOV S V,et al.Electric field effect in atomically thin carbon films[J].Science,2004,306(5696):666-669.
    [43]
    暴宁钟,白凤娟,何大方.石墨烯新材料发展现状与研发应用挑战[J].中国工业和信息化,2018(4):47-54.
    [44]
    车子璠,张辰,安琴友,等.我国石墨烯发展现状及展望[J].中国基础科学,2020(4):56-62.
    [45]
    李秀梅.石墨烯结构缺陷的类型、影响及修复的研究进展[J].广州化学,2021,46(5):14-19.
    [46]
    BOUTILIER M S H,SUN C,O'HERN S C,et al.Implications of permeation through intrinsic defects in graphene on the design of defect-tolerant membranes for gas separation[J].ACSNano,2014,8(1):841-849.
    [47]
    O'HERN SC,STEWARTC A,BOUTILIER M SH,etal.Selective molecular transport through intrinsic defects in a single layer of CVD graphene[J].ACS Nano,2012,6(11):10130-10138.
    [48]
    齐嘉东,任国华,方嬿,等.基于石墨烯本征缺陷的新型漏孔组件的制作[J].真空科学与技术学报,2021,41(4):358-362.
    [49]
    WANG X,LIN H,BI H,et al.New leak element based on transfer-free single-layer graphene membrane[J].Vacuum,2022,195:110681.
    [50]
    YOSHIDA H,ARAI K,KOBATA T.In-situ calibration method for ionization gauges and quadrupole mass spectrometers by combining the standard conductance element and the conductance modulation method(SCE-CM method)[J].Vacuum,2014,101:433-439.
    [51]
    卢耀文,陈旭,李得天,等.一种下限为1.3×10-14Pa·m3/s的真空漏孔校准装置[J].真空科学与技术学报,2014,34(5):504-509.
    [52]
    卢耀文,董云宁,杨传森,等.一种10-5-10-16Pa·m3/s标准气体流量计的设计[J].真空科学与技术学报,2021,41(5):422-426.
    [53]
    中华人民共和国国家质量监督检验检疫总局.吸气剂气体吸放性能测试方法:GB/T 25497-2010[S].北京:中国标准出版社,2011.
    [54]
    CHEUNG W S,SHIN J H,PARK K A,et al.Precision vacuum pumping speed measurement using sonic nozzles[J].Journal of Vacuum Science & Technology A:Vacuum,Surfaces,andFilms,2011,29(4):041603.
    [55]
    WANG X,WANG H,HUA Y,et al.A newly-developed wide range molecular flow meter based on AAO leak element[J].Flow Measurement and Instrumentation,2020,71:101686.
    [56]
    YOU D,WANG Y,YU Z,et al.Volume measurement based on dynamic differential pressure decay using AAO leak element[J].Vacuum,2019,169:108887.
    [57]
    赵澜,张涤新,冯焱,等.氦质谱检漏仪现场校准方法研究[J].真空,2010,47(1):59-62.
    [58]
    许阳光,潘晓霞,刘晓艰,等.大容积密闭容器背压法漏率检测关键技术研究[J].真空科学与技术学报,2018,38(10):839-845.
    [59]
    中国工程物理研究院机械制造工艺研究所.一种基于差压原理的无损检漏方法及装置:CN109556809A[P].2019-04-02.
    [60]
    程霞,陈志强,方嬿,等.基于分子流传感元件的真空腔体漏率测量方法[J].真空科学与技术学报,2021,41(2):139-144.

Catalog

    Article views (13) PDF downloads (8) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return