Citation: | YANG F Q,WANG C F,HU J,et al. Technical project of ion propulsion with high-precision variable thrust and intelligentautonomous operation on orbit[J]. Vacuum and Cryogenics,2023,29(4):414−420. DOI: 10.3969/j.issn.1006-7086.2023.04.013 |
The improvement of spacecraft mission capability and the development of intelligent autonomous technology are inseparable from the support of advanced propulsion system. In the future, with the widespread application of intelligent technology, spacecraft will rely less and less on ground control. In view of the application of high-precision variable thrust ion electric propulsion on the future advanced mission targets such as intelligent super low earth orbit high-resolution remote sensing satellites, drag free flight science satellites, ultra-stable and ultra-static satellites platform and high-precision satellites constellation, etc, this paper analysis current operation mode in orbit and the characteristics of ion electric propulsion such as fine adjustable and controllable electricity and gas flow, the difference between heaven and earth, and the performance decline in the late life, and puts forward the idea and technical scheme of developing intelligent autonomous ion electric propulsion with high precision and variable thrust. The key technologies are identified such as high precision autonomous ratio control small flow technology, intelligent autonomous thrust control algorithm based on high precision and fast data acquisition technology, fault autonomous diagnosis and processing, performance degradation detection and parameters reconstruction. The framework of intelligent autonomous operation electric propulsion system is preliminarily constructed, in order to finally achieve comprehensive goals of the future ion electric propulsion precess optimization, high precision, long life and intelligent autonomous operation.
[1] |
秦世引,燕飞. 小卫星及其星座的智能自主控制系统[J]. 中国空间科学技术,2004,10(5):15−21. doi: 10.3321/j.issn:1000-758X.2004.05.003
|
[2] |
冯小恩,李玉庆,杨晨,等. 面向自主运行的深空探测航天器体系结构设计及自主任务规划方法[J]. 控制理论与应用,2019,36(12):2035−2041.
|
[3] |
BARNEY P,DOUGLAS E B,et al. An autonomous spacecraft agent prototype[J]. Autonomous Robots,1998,5(1):1−7.
|
[4] |
SURKA D M, BRITO M C, HARVEY C G. The real-time object agent software architecture for distributed satellite systems[C]//IEEE Aerospce Conference Proceedings, 2001.
|
[5] |
QIN S Y, ZHAO B. The architecture of hybrid control and intelligent autonomous control for space robot based on multi-agent system technology[C]//Proceedings of 2001 International Workshop on Bio-Robotics and Teleoperation, Beijing, China, 2001: 351-356.
|
[6] |
CHIEN S, RABIDEAU G, WILLIS J, et al. Automating planning and scheduling of shuttle payload operations[J]. Artificial Intelligence, 1999, 114(1/2): 239-255.
|
[7] |
杨福全, 江豪成, 贾艳辉, 等. 中国现代小卫星技术发展研究论文集[C]. 北京: 中国宇航出版社, 2013: 225-232.
|
[8] |
黄永杰,杨福全,贾艳辉. 基于T5 离子推力器无拖曳飞行技术[J]. 真空与低温,2014,20(5):272−277. doi: 10.3969/j.issn.1006-7086.2014.05.006
|
[9] |
DAVID G F. Economical remote sensing from a low altitude with continuous drag compensation[J]. Acta Astronautica,2005,56(5):555−572.
|
[10] |
杨福全,王成飞,胡竟,等. 超低轨道应用离子电推进技术方案[J]. 中国空间科学技术,2021,41(3):52−59.
|
[11] |
邹奎,苟兴宇,薛大同. 重力梯度测量卫星无拖曳控制技术[J]. 空间控制技术与应用,2017,43(2):28−35. doi: 10.3969/j.issn.1674-1579.2017.02.005
|
[12] |
代树武,孙辉先. 航天器自主运行技术的进展[J]. 宇航学报,2003,24(1):17−22. doi: 10.3321/j.issn:1000-1328.2003.01.003
|
[13] |
向尚,陈盈果,李国梁,等. 卫星自主与协同任务调度规划综述[J]. 自动化学报,2019,45(2):21−33. doi: 10.16383/j.aas.c180068
|
[14] |
王文平,王向晖,徐浩,等. 高分三号卫星自主健康管理系统设计与实现[J]. 航天器工程,2017,26(6):40−46. doi: 10.3969/j.issn.1673-8748.2017.06.007
|
[15] |
王大轶,孟林智,叶培建,等. 深空探测器的自主运行技术研究[J]. 航天器工程,2018,27(6):1−10. doi: 10.3969/j.issn.1673-8748.2018.06.001
|